
Uncertainties in Physics: A Brief Reference

This is a brief and incomplete discussion of error analysis: the identification and quan-
titative evaluation of uncertainties in a measurement or experiment. The ultimate goal of
error analysis is to determine the range around the measured result where the true value
is most likely to lie. A good measurement will have uncertainties as small as feasible to
constrain the possible values the true value can have, but the uncertainties must also be
large enough to account for the imperfections in the experiment.

This discussion of error analysis is incomplete out of necessity; there are many books
devoted entirely to the subject, and we cannot hope to learn it all here! So, I will introduce
a few methods of error analysis commonly used by scientists that will be helpful in our labs
this year.

1 Identifying and Reporting Uncertainties

All experiments are associated with some uncertainty due to the limitations of the procedure
and measuring tools. An accurate assessment of the uncertainty is always required when
reporting the results of an experiment. Otherwise, there is no way to tell if your result
confirms known physics, predicts new physics (and gets you a Nobel Prize!), or is limited by
large uncertainties. Uncertainties fall into two categories: random and systematic.

1.1 Identifying Uncertainties

Random uncertainties include the imprecision in reading a meter or scale, uncertainties
due to uncontrolled fluctuations in experimental conditions, and uncertainties due to the use
of a limited sample size. Generally, for many trials of a measurement, random uncertainties
will manifest as a different result in each trial, with the results fluctuating randomly about
some mean value. If these fluctuations are small, the experiment is said to be precise.
Random uncertainties are sometimes referred to as statistical uncertainties.

Systematic uncertainties are the result of imperfect calibration of the apparatus or
assumptions and approximations made in the experimental design. These effects will shift
the result away from the true value in a way that is consistent over repeated trials. In
other words, systematic uncertainties change the mean value of the measurement by a fixed
number but otherwise give a consistent result from one trial to the next, which makes these
effects particularly tricky to detect. If systematic uncertainties are small, the experiment is
said to be accurate.

Physicists will use the words “error” and “uncertainty” interchangeably. You saw this
in the very first sentence of this document in the definition of error analysis. This can be
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quite confusing since these words have very different meanings in everyday language. Please
be aware that these words truly are synonyms in the physics lab. In particular, a list of
“experimental errors” does not mean that the experimenter is listing their mistakes. Also,
“human error” or mistakes should never be mentioned in your lab report as potential source
of uncertainty. It is expected that you work carefully and diligently to avoid and eliminate
mistakes, so that all uncertainties can be attributed to the limitations in the experimental
design and apparatus.

1.2 Reporting Uncertainties

Random uncertainties are always present. A well-designed experiment will use a measuring
device that is sensitive enough to detect these random fluctuations so that duplicate mea-
surements do not yield identical results . When using devices that require reading a scale or
analog meter, the correct procedure is to report your readings by estimating to one tenth of
the smallest scale division whenever possible. For example, when using a ruler with millime-
ter line markings to measure the length of an object, you should report your measurement
to the nearest tenth of a millimeter.

Once you’ve evaluated an uncertainty, there are several ways to report it. The simplest
is to report the measurement with the correct number of significant figures. For example, if
you report the length of an object to be 7.41 cm, it is implied that the uncertainty is in the
last digit and is at least 0.01 cm (or 0.1 mm) but less than 0.09 cm. The obvious downside
to this method is that there is some ambiguity. Perhaps, in this example, the experimenter
used a ruler with millimeter markings and interpolated to the nearest 0.1 mm so that 0.1
mm is the uncertainty, but we won’t know that unless this information is included in the lab
report.

It is usually better to explicitly state the uncertainty. This is often done with plus-minus
(±) notation, for example: 7.41 ± 0.03 cm. This indicates that the best measurement is
7.41 cm and the uncertainty is 0.03 cm. The ± says that the true length is within 0.03 cm
of 7.41 cm; in other words, between 7.38 cm and 7.44 cm.

There are two important things to note with this notation. First, the measured value
7.41 cm and the uncertainty 0.03 cm contain the same number of decimal places. This must
always be done! Second, the uncertainty of 0.03 cm only contains one significant figure. This
is almost always the case - since the uncertainty indicates the degree to which the result is
unknown, any figures beyond the first are meaningless. The only exception is if the first
significant figure of the uncertainty is 1. In this case, it is acceptable to include a second
figure: for example, 7.414 ± 0.013 cm (notice that an extra digit is given with the measured
value so that the number of decimal places match).

When using ± notation with scientific notation, it is usually best to use the same power
of 10 for both the measurement and uncertainty. For example, if you measure the wavelength
of light to be 5.31×10−7 m and the uncertainty to be 4×10−9 m, you would state the result
to be (5.31 ± 0.04)×10−7 m. Of course, you could avoid scientific notation entirely by using
a prefix on the units: 531 ± 4 nm (nanometers) in this example.
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2 Assessing Random Uncertainties

Random uncertainties are assessed by repeating a measurement as many times as is practical,
without changing any relevant experimental conditions. For example, suppose you measure
the time for an object to accelerate (starting from rest) through some distance d. You do
this measurement eight times and measure the following times:

TRIAL Time (s)
1 5.22
2 5.41
3 5.63
4 5.31
5 5.03
6 5.53
7 5.41
8 5.75

If asked to report the best value for the time, a sensible thing to do is to report the average
(often called the mean) value of the time data,1 where the average time t̄ is given by

t̄ =≡ 1

N

N∑
j=1

tj (1)

where N is the number of measurements of t (in the example above, N = 8). Hence, for
the data above,

t̄ =
(5.22 + 5.41 + 5.63 + 5.31 + 5.03 + 5.53 + 5.41 + 5.75)

8
=

43.29

8
= 5.41125 sec.

Thus, we would report our best estimate for the time as roughly 5.41 seconds. Now, what
is the uncertainty on this number? Again, there are several ways to go.

2.1 A conservative approach

The first method is to be very conservative (this has nothing to do with one’s political
leanings!) and state the maximum and minimum possible values relative to the mean. For
example, in the data above, the maximum time is 5.75 seconds, and the minimum time is
5.03 seconds. These values differ from the mean by +0.34 and -0.40 seconds, respectively.
So, one could use the higher of these two values (to be the most cautious) and state the time
and uncertainty as

t̄ = (5.4± 0.4) seconds

(be sure you understand why 5.41125 is rounded to one decimal place!). This is perhaps
the most straightforward way to get the uncertainty, and it says that we are confident that
the true time lies pretty close to 5.4 seconds, but may vary by as much as 0.4 seconds from
this time.

1There are other ways to calculate the “best” value; the mean is only one of several possibilities.

3



2.2 Standard deviation

Notice however, that this uncertainty is very cautious; indeed, most measurements lie sig-
nificantly closer to the mean value. Hence, it is reasonable to quote a smaller uncertainty,
so long as you interpret the error bar to give a range where the true value is likely to be
rather than an absolute statement of possibilities. So here is another way to estimate the
uncertainty. This second method is called the standard deviation and is computed by first
calculating the deviation of each trial j from the mean; i.e.

∆tj = tj − t̄ (2)

where t̄ is calculated using equation (1). Note that values higher than the mean are
positive deviations, and values smaller than than the mean are negative deviations. The
table below shows the deviations for the original data:

TRIAL Time (s) ∆tj
1 5.22 -0.19125
2 5.41 -0.00125
3 5.63 +0.21875
4 5.31 -0.10125
5 5.03 -0.38125
6 5.53 +0.11875
7 5.41 -0.00125
8 5.75 +0.33875

Notice that the uncertainty for trials 2 and 7 are not zero; this is because I used the
full value for t̄ (5.41125 seconds) in calculating ∆tj. It is best to not round error analysis
calculations until the very end when reporting the result; see Section 1.2.

At this point, you might be tempted to say “Oh great! So now I just take the deviations,
add them together and compute the average value and this will be the uncertainty!” Bad
luck. You see, the problem is that if you do this, you will get zero: try it and see! And the
problem is even worse than this—the average deviation computed in this way will always be
zero because of the definition of the mean and the deviation we have used.

So, we need a way around this trouble. The reason the average deviation is zero is because
some of the deviations are positive and some are negative (in just the right amounts so that
they sum to zero). So, we can make the deviations positive by first squaring them. Then if
we add them together they will not sum to zero, and if we divide by the number of trials
minus one2, we have something called the variance of t, or σ2

t :

σ2
t =

1

N − 1

N∑
j=1

(∆tj)
2 (3)

Of course, if t has units of seconds, then σ2
t has units of seconds-squared, and the obvious

way to remedy this situation is to take the square root, thus ending up with the standard
deviation of t, or σt:

2We use N − 1 instead of N for technical reasons that are not important for our purposes.
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σt =

√√√√ 1

N − 1

N∑
j=1

(∆tj)2 (4)

Adding onto the previous data table, we have

TRIAL # Time (s) ∆tj (∆tj)
2

1 5.22 -0.19125 0.03658
2 5.41 -0.00125 0.000002
3 5.63 +0.21875 0.04785
4 5.31 -0.10125 0.01025
5 5.03 -0.38125 0.14535
6 5.53 +0.11875 0.01410
7 5.41 -0.00125 0.000002
8 5.75 +0.33875 0.11475

σ2
t : 0.05270 sec2

The variance is is 0.05270 s2 and, taking the square root, the standard deviation is 0.22956
seconds. Hence, by the standard deviation method of calculating the uncertainty, we have,
as our estimate of t:

t̄ = (5.4± 0.2) seconds

Notice that this uncertainty is considerably smaller than that derived from the conservative
approach. The reasoning is that while occasionally you may measure a time that falls outside
of the standard deviation bounds, on average, the majority will fall within this range3.

2.3 Standard error

The standard deviation quantifies the spread of the data points about the mean. In other
words, if you were to measure one additional data point, the standard deviation roughly tells
you how far to expect that measurement to be from the mean. This is useful, as it predicts
the range of values of future measurements, but it is still a conservative approach. What we
usually want is the uncertainty on the mean value itself, rather than the uncertainty on one
data point.

The solution is to calculate the standard error σt̄ of t̄, as follows:4

σt̄ =
σt√
N

(5)

Notice that as the number of measurements N increases, the standard error gets smaller.
This is just as you would expect: the uncertainty on the mean gets smaller when you collect
more data.

3For measured values that follow a normal, or Gaussian, distribution, about 68% will fall within this
range.

4This formula assumes that your measurements follow a normal distribution. This is usually true, though
there are some notable exceptions, such as when counting the number of radioactive decays of an unstable
nucleus.
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Continuing the example from the previous sections, we divide the standard deviation of
t (0.22956 seconds) by

√
N =

√
8 and calculate the standard error to be 0.081162 seconds.

Our new best estimate of t is:

t̄ = (5.41± 0.08) seconds

As expected, this uncertainty is smaller than the standard deviation method.

2.4 Which method should I use?

If you do not have many measurements of a quantity, it is probably best to be cautious and
use the conservative approach. If you need to predict the range of results of a single future
measurement, then the standard deviation is best. But for most cases, you will be interested
in the uncertainty on the mean of several trials, which is best determined by the standard
error.

QUESTIONS

1. Calculate the standard deviation and standard error for the following data points: x =
0.10 m, 0.08 m, 0.12 m, 0.09 m, 0.10 m, and 0.11 m. Answers: x̄ = 0.100, σx = 0.014,
σx̄ = 0.0058

2. Suppose that you measure two times with your phone’s stopwatch, t=1.51 sec and
t=1.51 sec. What—if anything—is wrong with saying that the uncertainty in t is
zero? What should you report for the uncertainty in this case?

3 Graphical Analysis and Random Uncertainties

In the physics lab, we often want to test how some quantity of interest (the dependent vari-
able) depends on an experimental parameter that is controlled (the independent variable).
This is usually done by conducting multiple trials of the experiment, with each trial done for
a different value of the independent variable. For example, an experimenter may record the
electrical current (dependent variable) in a circuit for different values of the input voltage
(independent variable) to the circuit.

In this sort of experiment, it is usually best to analyze the data by plotting the dependent
variable (on the y axis) vs. the independent variable (on the x axis). By making clever choices
for the plotted variables, we can usually make this plot linear so that the measurement is
to simply measure the slope and y-intercept of a line of best fit. It usually is not practical
to use the random uncertainty analysis methods of section 2 in this sort of measurement,5

but we can still estimate the random uncertainty of the slope and y-intercept of the linear
fit from the way the data points scatter around the fit line, as you will see.

5this would require that you take so many measurements that you can produce many plots and measure
the slope of each one.
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3.1 Data Linearization

For a concrete example, suppose that you want to compute the acceleration of a dense
object released from rest as it falls in the gravitational field of the earth. You know from
your introductory physics course that for an object released from rest close to the earth’s
surface, that the distance fallen d as a function of time t is approximately

d =
1

2
gt2 (6)

where g is the acceleration due to gravity.
You set out to determine the experimental value of g by timing how long it takes for a

ball bearing to fall through some measured distance. So, being a good experimenter, you
measure the time it takes to fall through at least 10 different distances. For each distance,
you record five trials, and compute the average time of fall and the uncertainty on the time
(via one of the methods outlined in Section 2). You therefore end up with ten trials with
uncertainties on the distance of fall and uncertainties on the the time of fall.

Trial distance t
±0.01m ±0.01 s

1 0.00 0.00
2 0.29 0.18
3 0.23 0.22
4 0.73 0.34
5 1.13 0.41
6 1.82 0.57
7 2.11 0.65
8 3.21 0.77
9 3.95 0.86

10 4.61 0.94

So now, the question is what is the best way to graphically analyze this data, and obtain
an experimental value for g? What we want to do is linearize the data so that we get a linear
trend when plotted. Then, we will fit the data to a line of best fit and extract a measurement
of g from the slope.

To figure out how to plot our data to make it linear, we need to determine a function of
distance F (d) and another function of time G(t) so that when we plot F (d) on the y-axis and
G(t) on the x-axis, the trend is linear. In other words, we want these functions to satisfy:

F (d) = mG(t) + b (7)

where m is the slope of the line and b is the y-intercept. Now, look at Eq. (6). If we
choose F (d) = d, and G(t) = t2, we see that

F (d) =
1

2
gG(t) (8)
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Therefore, if we were to plot d on the y-axis vs. t2 on the x-axis, we expect to get a linear
trend with a slope equal to 1

2
g and a y-intercept of zero.

3.2 Uncertainty of a Linear Fit

There are several ways to evaluate the uncertainties on a linear fit. In the first approach,
which I’ll call the manual method, you will need to construct your plot with vertical and
horizontal error bars. In the previous example of a d vs t2 plot, the vertical error bars
indicate the uncertainty on the measurement of d, and the horizontal error bars indicate the
uncertainty on t2 (see the next section for methods to find the uncertainty on t2 starting from
the uncertainty on t). Draw different lines of best fit on the plot that are consistent with
most of the error bars. The goal is to find, by eye, the lines of best fit with the smallest and
largest possible slopes that are consistent with the uncertainties. In this method, the best
fit slope will be the average of the smallest and largest slopes, and the uncertainty will be
the difference between the average slope and the extreme values, similar to the conservative
method of Section 2.1.

If you use spreadsheet software such as Microsoft Excel or Google Sheets to make your
plot, then there is a simpler and more accurate way to find the uncertainty. These programs
contain a function called LINEST() which takes as input the data used to construct the
plot, and outputs the best fit parameters (e.g., the slope and y-intercept) and their standard
errors, among other information. Refer to your spreadsheet software’s documentation for
LINEST() for more information.

4 Propagation of Uncertainties

It is often the case that we are unable to directly measure the desired physical quantity.
Instead, we directly measure quantities that have a known relationship with the desired
quantity, and we need to use that information to determine the desired quantity and its un-
certainty. This problem is an example of error propagation, because we need to propagate
the error from the directly measured quantities to the desired quantity. In a general error
propagation situation, several variables x1, x2, ..., xn with uncertainties ∆x1, ∆x2, ..., ∆xn
are measured by the experimenter, who needs to calculate a new quantity y that depends
on the measured variables according to a known function f ; i.e., y = f(x1, x2, ..., xn).

The method used to compute the uncertainty ∆y depends upon the size of the experi-
mental errors on the directly measured quantities. If you were a careful experimenter and
used good equipment so that the errors are small, then you can use differential error prop-
agation; if your uncertainties in the time were larger, it might make sense to use what I’ll
call a worst-case scenario method.

4.1 Worst-case scenario method - one variable

Let’s simplify the general error propagation situation to one that only involves one directly
measured quantity x with error ∆x. The calculated quantity y depends on x according to
a known function y = f(x). If the uncertainty in x is not small, then one could argue that
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a more realistic estimate of the uncertainty in y would be to compute the extreme possible
values of y that are consistent with the uncertainty on x and report the uncertainty as half
their difference. The extreme values of y, which I’ll call ymax and ymin, are calculated as
follows:

ymax = f(x+ ∆x)

ymin = f(x−∆x)
(9)

In other words, ymax is the value of y when x takes on its largest possible value consistent
with uncertainties, and ymin corresponds to the smallest possible value of x. The uncertainty
∆y on y is

∆y =

∣∣∣∣ymax − ymin

2

∣∣∣∣ (10)

Let’s see how this method works in an example. Let’s say you have measured an angle
θ = 25± 2◦ and wish to calculate a quantity s that is related to θ according to s = 5 cos θ.
Compare this specific problem to the general method above. The measurement θ plays the
role of x, the function f(x) is f(θ) = 5 cos θ, and the calculated quantity s corresponds to
y. We start by finding smax and smin according to equation (9):

smax = 5 cos (θ + ∆θ) = 5 cos (25◦ + 2◦) = 4.4550

smin = 5 cos (θ −∆θ) = 5 cos (25◦ − 2◦) = 4.6025
(11)

Then we calculate the error ∆s:

∆s =

∣∣∣∣smax − smin

2

∣∣∣∣ =

∣∣∣∣4.4550− 4.6025

2

∣∣∣∣ = 0.07 (12)

Next, calculate the best value of s using the best value of θ:

s = 5 cos (25◦) = 4.53 (13)

We now have everything needed to report the measurement of s with appropriate uncer-
tainty: s = 4.53± 0.07.

4.2 Differential error propagation - one variable

This method is optional in PHY 114 and PHY 116 because it assumes familiarity with dif-
ferential calculus.

As we did in the previous section, let’s consider a situation that involves only one directly
measured quantity x ± ∆x and a calculated quantity y that depends on x according to
y = f(x). The standard way to compute the uncertainty on the calculated quantity y,
assuming the uncertainty ∆x is small, is to use differential error propagation. The differential
change in y is simply the total derivative or dy =

(
df
dx

)
dx. By assuming that the experimental

uncertainty ∆x is small, we can replace dx and dy with ∆x and ∆y to approximate the
experimental uncertainty on y as:
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∆y =

∣∣∣∣( dfdx
)

∆x

∣∣∣∣ (14)

in which the derivative is evaluated at the measured value of x and the absolute value
bars ensure a positive value for the uncertainty.

Let’s apply this method to the example of the previous section, in which you have mea-
sured an angle θ = 25± 2◦ and wish to calculate a quantity s that is related to θ according
to s = f(θ) = 5 cos θ. Before plugging in to Equation (14), we need to convert the angle
measurements to radians6. The conversion gives θ = 0.4363 ± 0.0349 radians (I keep a few
extra digits to make sure that the conversion calculation doesn’t introduce rounding errors.
Next, using Equation (14), we have:

∆s =

∣∣∣∣(dfdθ
)

∆θ

∣∣∣∣ = |(−5 sin (0.4363 rad)) ∆θ| = |(−2.113) (0.0349)| = 0.07 (15)

As in the previous section, we find s = 4.53± 0.07, which demonstrates that the uncer-
tainties are small enough that the differential error propagation method is suitable for this
example.

4.3 Propagating multiple sources of error

Now we are ready to generalize to the situation of a desired quantity y that depends on two
or more measured quantities that each have their own error. As a concrete example, imagine
that you want to measure the surface area A of a rectangular table by measuring its length
l and width w. The surface area is determined by the equation

A = lw (16)

and l and w each have an uncertainty ∆l and ∆w that contributes to the total uncertainty
on the surface area ∆A. To determine ∆A, first calculate the uncertainty due to l only
(call this ∆Al, meaning the “uncertainty on A due to the uncertainty on l”) while assuming
that w is fixed at its measured value, using differential error propagation or the worst-case
scenario method described above. Next, calculate ∆Aw (the uncertainty on A due to the
uncertainty on w) using the same method. Then combine the uncertainties by adding them
in quadrature7 to find the total uncertainty on A:

∆A =
√

∆A2
l + ∆A2

w

For each additional source of “input” error, there will be another ∆ term that is squared
underneath the square root sign.

Let’s practice this method with a situation in which l = 2.4± 0.2 cm and w = 4.1± 0.4
cm. We get the following using the worst-case scenario approach:

6The reason is that the differential dθ is outside the trig function
7This relies on the underlying uncertainties following a Gaussian distribution. If that is not the case,

then another method might be better. We won’t consider non-Gaussian cases in this class.
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Amax,l = w (l + ∆l) = (4.1 cm) (2.4 + 0.2 cm) = 10.66 cm2

Amin,l = w (l −∆l) = (4.1 cm) (2.4− 0.2 cm) = 9.02 cm2

∆Al =

∣∣∣∣Amax,l − Amin,l

2

∣∣∣∣ = 0.82 cm2

Amax,w = l (w + ∆w) = (2.4 cm) (4.1 + 0.4 cm) = 10.80 cm2

Amin,w = l (w −∆w) = (2.4 cm) (4.1− 0.4 cm) = 8.88 cm2

∆Aw =

∣∣∣∣Amax,w − Amin,w

2

∣∣∣∣ = 0.96 cm2

∆A =
√

∆A2
l + ∆A2

w = 1.26 cm2 ≈ 1.3 cm2

(17)

The first three lines calculate the error on A due solely to the error on l, and the second
three lines calculate the error on A due solely to the error on w. The last line calculates the
total uncertainty. Now we just need to find the best measured value of A using A = lw =
4.1 cm × 2.4 cm = 9.84 cm2. The measurement of the area is A = 9.8± 1.3 cm2.
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