Week 7 Morentur，inelastic Collisions，丰 impulse
Question 1：Constr the system of black shoo below．They each slide without friction， and when they collide，they stick．Answer the following questions．

（a）What is the speed of the 10 kg block that results when the $6 \mathrm{~kg}=4 \mathrm{~kg}$ blocks collie？ Sima tore are no nat extend forces，the momentum of the $4 \mathrm{~kg} / 6 \mathrm{gy}$ super will be conserved：

$$
\begin{aligned}
& \vec{p}_{i}=\vec{p}_{f} \\
& \begin{aligned}
6 \mathrm{~kg} \cdot 10 \frac{\mathrm{~m}}{\mathrm{~s}}+4 \mathrm{~kg} \cdot\left(-2 \frac{\mathrm{n}}{\mathrm{~s}}\right) & =10 \mathrm{~kg} \cdot V_{f} \quad ; \quad I \text { chur }+x \text { to a xpht } . \\
52 \mathrm{~kg} \cdot \mathrm{~m} & =10 \mathrm{~kg} \cdot V_{f}
\end{aligned} \\
& 52 \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}}=10 \mathrm{~kg} \cdot \cdot_{f}^{f} \\
& \text { then, } \\
& v_{f}=5.2 \mathrm{n} / \mathrm{s}
\end{aligned}
$$

（b）Neat，this 10 kg block collider \＃stacks with the 8 kg block．What is the fund speed of the resulting 18 kg object？
Sane dea－nonenturn is conserved：

$$
\begin{aligned}
& \vec{p}_{i}=\vec{p}_{f} \\
& 10 \mathrm{~g} \cdot 5.2 \frac{n}{3}+8 \mathrm{~kg} \cdot\left(-7 \frac{\pi}{3}\right)=18 \mathrm{~kg} \cdot V_{f} \\
& 52 \frac{\mathrm{gn}}{\mathrm{~g}}-56 \mathrm{~g} \frac{\mathrm{~g} \cdot \mathrm{~s}}{\mathrm{~s}}=18 \mathrm{~kg} \cdot \mathrm{~V}_{\mathrm{f}} \\
& -4 \mathrm{~kg} / \mathrm{y}=18 \mathrm{~kg} \cdot \mathrm{v}_{\mathrm{f}} \\
& -\frac{2}{9} \frac{n}{5}=v_{f}
\end{aligned}
$$

（c）Suppose all three blocs collided simultaneously．What would the find speed of the 18 kg
object be in this case？ object be in this case？
there will be no deference：

$$
\begin{gathered}
\vec{p}_{i}=\vec{p}_{f} \\
6 \mathrm{~g} \cdot 10 \frac{n}{s}+4 \mathrm{~kg}\left(-2 \frac{n}{3}\right)+8 \mathrm{~kg}\left(-7 \frac{n}{3}\right)=18 \mathrm{~g} \cdot v_{f} \\
(60-8-56) \frac{\mathrm{g} \cdot n}{5}=18 \mathrm{~kg} \cdot v_{f} \\
-4 \mathrm{~kg} \cdot n=18 \mathrm{~kg} \cdot v_{f}^{s} \\
-\frac{2}{9} \frac{\pi}{5}=v_{f}
\end{gathered}
$$

Question 2: A ball of mass 50 g is dropped for a heopht of 5.0 m \& rebounds to a height of 4.0 m .
(a) Using your knowledge of kinematics, calculate the velocity with which the ball first impacts the ground.

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a \Delta y \\
& v^{2}=2 g \cdot 5 m \\
& v=\sqrt{2\left(9.8 \frac{n}{s}\right) 5 n}=9.899 \frac{n}{s}
\end{aligned}
$$

(b) The bell rebounds to a maximum height of 4.0 m . With what velocity did it
leave the surface? leave the surface?

$$
\begin{aligned}
y^{2} & =v_{0}^{2}+2 a \Delta y \\
0 & =v_{0}^{2}+2(-g) 4 m \\
\therefore \quad v_{0}^{2} & =2 g \cdot 4 m \\
v_{0} & =8.854{ }^{H / s}
\end{aligned}
$$

(c) If the ball ware in contact with the ground for 0.0005 sec , what was the average force acting on the ball durey the collision?
Now we find the average force via

$$
\begin{gathered}
\vec{F}=\frac{\Delta p}{\Delta t}=\frac{\vec{F}_{+}-\vec{p}_{i}}{\Delta t} \\
\bar{F}=\frac{\vec{m} \vec{v}_{f}-\vec{m} \vec{v}_{i}}{\Delta t}=\frac{m\left(\vec{v}_{+}-\vec{v}_{i}\right)}{\Delta t}=\frac{0.05 \mathrm{~g}\left(8.854 \frac{n}{n}-\left(-9.84 \frac{n}{3}\right)\right)}{0.0005 \mathrm{~s}} \quad V_{i}=-9.899 \frac{n}{\mathrm{~s}} \\
\bar{F}=1875 \mathrm{~N}
\end{gathered}
$$

(d) What was the balls average acceleration during the collision?

Via $F=m a$,

$$
a=\frac{1875 \mathrm{~N}}{.05 \mathrm{~kg}}=37,500 \frac{\mathrm{~K}}{\mathrm{~s}^{2}}
$$

A huge acceleration!

Question 3 A 12 ry disk is initially at rest on a frictionless surface. It explodes into three chunks as shown.
Compute the speed and the angle at which
the 6 kg chunk travels after the explosion.
Another conservation of monentur question; this tire in 2D.
I've picks $+x$ to right $\ddagger+y$ upward.
In terms of the unknown veloaty components $V_{x} \ddagger V_{y}$ for the 6 kg chunk, we can write conservation of rotetenturn in the $x \notin y$ directions:

$$
2 \mathrm{~kg} \cdot\left(-20 \frac{\pi}{3}\right)+4 \mathrm{~kg} \cdot 30 \frac{\pi}{3} \cos 40^{\circ}+6 \mathrm{~kg} \cdot V_{x}=0
$$

$$
-40 \frac{\mathrm{~kg} \cdot \mathrm{r}}{\mathrm{~s}}+91.925 \frac{\mathrm{gg} \pi}{\mathrm{~s}}+6 \mathrm{gg} v_{x}=0
$$

$\therefore \quad v_{x}=-8.654 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\begin{aligned}
2 \mathrm{~kg} \cdot 0 \frac{n}{s} & +4 \mathrm{~kg}\left(-30 \frac{n}{s} \cdot \sin 40^{\circ}\right)+6 \mathrm{~kg} \cdot v_{y}=0 \\
& -77.135 \mathrm{~kg} \mathrm{\cdot n} \mathrm{~s}+6 \mathrm{~kg} \cdot v_{y}=0 \\
0) & \\
v_{y}= & +12.856 \mathrm{~m}
\end{aligned}
$$

(1) Now that we have the components of \vec{V}_{F}, we use the Pythagorean thereren to fund the speed:

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=15.5 \frac{\pi}{\mathrm{~s}}
$$

(2) the angle is clearly greater than 90° sure V_{x} is negative:

$$
\begin{aligned}
& \tan \phi=\frac{12.856}{8.654}=56.1^{\circ} \\
& \therefore \theta=123.9^{\circ}
\end{aligned}
$$

