Problem Set #1

Question 1

Griffiths, Problem 4.1

Question 2

A point charge +q is situated a large distance r from a neutral atom of polarizability α . Find the force of attraction between them.

Question 3

I often tell students in physics 123 that

$$\vec{E} = \frac{\vec{F}_{+q}}{q}$$

defines the electric field at a point if \vec{F}_{+q} is the measured force on a tiny charge +q placed at that point. If I am being careful, I also tell students to let $q \to 0$ to avoid the polarization of nearby matter due to the presence of q. Unfortunately, this experiment is impossible to perform. A better definition uses \vec{F}_{+q} and the force \vec{F}_{-q} measured when -q sits at the same point. In this method, there is no need to let $q \to 0$, even if conductors or (linear) dielectric matter is present. Derive an expression that relates \vec{E} to \vec{F}_{+q} and \vec{F}_{-q}

Question 4

Consider two spheres, each with radius R but possessing equal but opposite uniform charge densities $\pm \rho$. The centers of the two spheres are offset very slightly by an infinitesimal displacement vector $\vec{\delta}$. Compute the electric field produced at some *general position* \vec{r} (both inside and outside the spheres) by each sphere and show by superposition that the electric field produced by the combination is identical to the electric field produced by a sphere with a suitably chosen uniform polarization \vec{P} . What is the value of \vec{P} ?

Question 5

Griffiths, Problem 4.9